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Intracavity doubled solid state lasers based on Nd-doped crystals are efficient
and compact sources of coherent visible optical radiation. When such lasers operate
in three or more longitudinal cavity modes, irregular fluctuations of the output
intensity may occur. This behavior, referred to as the green problem, has been
reported for the first time by Baer 1. He found that these instabilities arise from a
coupling of the longitudinal modes of the laser by sum-frequency generation, which
occur in the intracavity-doubling crystal. When the laser does not contain the
nonlinear crystal or when it operates in a single longitudinal mode, its output is
stable. In the case of two oscillating longitudinal modes, output intensity of the
laser is stable only for small values of nonlinearity, otherwise both modes tend to
pulse on and off out of phase with each other '. When the number of lasing modes
is larger than two, the laser can exhibit, depending on the parameters describing it,
various behaviors like: aniphase dynamics 2, 3, clustering 1, grouping 4 and chaotic

dynamics 5
The main goal of this communication is to study the possibilities of a stabilization

of large amplitude fluctuations in such a laser, i.e., an intracavity-doubled Nd:YAG
laser. The analysis is based on the Baer-type rate equations 1

aI(p, t)t

7 at = I(p, t) %+ G(p, t) - cI(p, t) - 2E q , t (1a)
q0p

17 at Gap-G(pt) l+ 3 (p,p)I(p,t)+Ef3(p,q)I(q,t), (1b)

q~p

p, q : 1..., N,

where N is the number of longitudinal modes; Tr and rf are the cavity round
trip time and the fluorescence lifetime of the Nd+3 ion, respectively; I(p, t) and
G(p, t) are, respectively, the intensity and gain associated with the p-th longitudinal
mode; al is the cavity loss parameter for the p-th mode; Gap is the small signal
gain; f)(p, p) is the self-saturation coefficient in the active medium; fl(p, q) is the
parameter describing the cross-saturation between two longitudinal modes, p and
q. The parameter e is a nonlinear coefficient whose value depends on properties of
the nonlinear crystal and it describes the conversion efficiency of the fundamental
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intensity into the doubled intensity. The terms eI(p, t)2 and eI(p, t)lI(q, t) in Eq.
(la) account for the loss in the intensity of the fundamental frequency through
second harmonic generation and through sum-frequency generation, respectively,
and they provides a nonlinear loss mechanism that globally couples the longitudinal
modes, i.e. each lasing mode is coupled to all other lasing modes 2. A comparable
amount of global coupling occurring in the set of Eq. (1) is introduced by the cross-
saturation coefficient, 611Gk. We use the approximation that the cross-saturation
coefficient is constant for all modes, 83(p, q) =3, where 3 -- or 1 = 3o, where

,8o = 0.06 is a scalling parameter. We assume also that the losses and the small
signal gains are the same for all modes, i.e. ap = aq = a, Gap = G0 q = Ga, where
p, q = 1,...,N. Other parameters describing the system we have chosen in such
a way that they can describe a real experimental configuration of the laser, i.e.,
rl --- 10 [ns], r1 = 0.24[ms], a = 0.015, -y = 0.12. The number of longitudinal
modes, N 1, ... , 250, and the strength of nonlinearity, e = 10-7 ± 10-', are not
fixed and they vary in the analysis.

First, we analyze numerically the stabilization of the laser radiation by an

increase of the number of longitudinal modes, proposed in '. We observe that the
theoretically obtained 3 linear dependence of the minimal number of modes, which
are needed to stabilize the laser output, on the strength of nonlinearity agree with
the numerical solutions only in the case of sufficiently small nonlinearity. For large
nonlinearity the minimal number of modes obtained by the numerical simulations
is larger than the number which follows from the theoretical predictions. It is
caused by a strong cancellation of modes during the evolution. For very large
nonlinearity this cancellation is so strong that only few modes remain (even when
there are initial 250 oscillating modes). Therefore, a large number of simultaneously
oscillating longitudinal modes cannot be achieved in this case.

However, the problem of the stabilization of the laser output can be solved in
another way, namely, by an increase of the strength of nonlinearity, which leads
to very strong competition between the modes, so that during the evolution all of
them, besides a single one, are canceled. As a consequence, a steady-state solution,
which is stable against small perturbations, arises.

This way of stabilization, achieved by forcing the laser to operate in one-
mode regime, is similar to other approaches presented in the literature, where the
stabilization is obtained by inserting into the laser cavity an additional element like,
for example, an etalon 1 or a birefringent crystal. However, this proposed method
seems to be a better solution, since no additional element is needed and the output
intensity of the doubled frequency is larger (it increases with the increasing of the
strength of nonlinearity).
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